extension | φ:Q→Out N | d | ρ | Label | ID |
(C7×D4)⋊1C23 = C2×D7×D8 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | | (C7xD4):1C2^3 | 448,1207 |
(C7×D4)⋊2C23 = C2×D8⋊D7 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | | (C7xD4):2C2^3 | 448,1208 |
(C7×D4)⋊3C23 = D7×C8⋊C22 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 56 | 8+ | (C7xD4):3C2^3 | 448,1225 |
(C7×D4)⋊4C23 = C22×D4⋊D7 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 224 | | (C7xD4):4C2^3 | 448,1245 |
(C7×D4)⋊5C23 = C2×D4⋊D14 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | | (C7xD4):5C2^3 | 448,1273 |
(C7×D4)⋊6C23 = C22×D4×D7 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | | (C7xD4):6C2^3 | 448,1369 |
(C7×D4)⋊7C23 = C22×D4⋊2D7 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 224 | | (C7xD4):7C2^3 | 448,1370 |
(C7×D4)⋊8C23 = C2×D4⋊6D14 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | | (C7xD4):8C2^3 | 448,1371 |
(C7×D4)⋊9C23 = C2×D7×C4○D4 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | | (C7xD4):9C2^3 | 448,1375 |
(C7×D4)⋊10C23 = C2×D4⋊8D14 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | | (C7xD4):10C2^3 | 448,1376 |
(C7×D4)⋊11C23 = D7×2+ 1+4 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 56 | 8+ | (C7xD4):11C2^3 | 448,1379 |
(C7×D4)⋊12C23 = D8×C2×C14 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 224 | | (C7xD4):12C2^3 | 448,1352 |
(C7×D4)⋊13C23 = C14×C8⋊C22 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | | (C7xD4):13C2^3 | 448,1356 |
(C7×D4)⋊14C23 = C4○D4×C2×C14 | φ: trivial image | 224 | | (C7xD4):14C2^3 | 448,1388 |
(C7×D4)⋊15C23 = C14×2+ 1+4 | φ: trivial image | 112 | | (C7xD4):15C2^3 | 448,1389 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C7×D4).1C23 = C2×D8⋊3D7 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 224 | | (C7xD4).1C2^3 | 448,1209 |
(C7×D4).2C23 = D8⋊13D14 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | 4 | (C7xD4).2C2^3 | 448,1210 |
(C7×D4).3C23 = C2×D7×SD16 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | | (C7xD4).3C2^3 | 448,1211 |
(C7×D4).4C23 = C2×D56⋊C2 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | | (C7xD4).4C2^3 | 448,1212 |
(C7×D4).5C23 = C2×SD16⋊D7 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 224 | | (C7xD4).5C2^3 | 448,1213 |
(C7×D4).6C23 = C2×SD16⋊3D7 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 224 | | (C7xD4).6C2^3 | 448,1214 |
(C7×D4).7C23 = D28.29D4 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | 4 | (C7xD4).7C2^3 | 448,1215 |
(C7×D4).8C23 = D7×C4○D8 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | 4 | (C7xD4).8C2^3 | 448,1220 |
(C7×D4).9C23 = D8⋊10D14 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | 4 | (C7xD4).9C2^3 | 448,1221 |
(C7×D4).10C23 = D8⋊15D14 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | 4+ | (C7xD4).10C2^3 | 448,1222 |
(C7×D4).11C23 = D8⋊11D14 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | 4 | (C7xD4).11C2^3 | 448,1223 |
(C7×D4).12C23 = D8.10D14 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 224 | 4- | (C7xD4).12C2^3 | 448,1224 |
(C7×D4).13C23 = SD16⋊D14 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | 8- | (C7xD4).13C2^3 | 448,1226 |
(C7×D4).14C23 = D8⋊5D14 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | 8+ | (C7xD4).14C2^3 | 448,1227 |
(C7×D4).15C23 = D8⋊6D14 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | 8- | (C7xD4).15C2^3 | 448,1228 |
(C7×D4).16C23 = D7×C8.C22 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | 8- | (C7xD4).16C2^3 | 448,1229 |
(C7×D4).17C23 = D56⋊C22 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | 8+ | (C7xD4).17C2^3 | 448,1230 |
(C7×D4).18C23 = C56.C23 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 112 | 8+ | (C7xD4).18C2^3 | 448,1231 |
(C7×D4).19C23 = D28.44D4 | φ: C23/C2 → C22 ⊆ Out C7×D4 | 224 | 8- | (C7xD4).19C2^3 | 448,1232 |
(C7×D4).20C23 = C2×D4.D14 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | | (C7xD4).20C2^3 | 448,1246 |
(C7×D4).21C23 = C22×D4.D7 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 224 | | (C7xD4).21C2^3 | 448,1247 |
(C7×D4).22C23 = C2×D4.8D14 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 224 | | (C7xD4).22C2^3 | 448,1274 |
(C7×D4).23C23 = C28.C24 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | 4 | (C7xD4).23C2^3 | 448,1275 |
(C7×D4).24C23 = C2×D4.9D14 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 224 | | (C7xD4).24C2^3 | 448,1276 |
(C7×D4).25C23 = D28.32C23 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | 8+ | (C7xD4).25C2^3 | 448,1288 |
(C7×D4).26C23 = D28.33C23 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | 8- | (C7xD4).26C2^3 | 448,1289 |
(C7×D4).27C23 = D28.34C23 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | 8+ | (C7xD4).27C2^3 | 448,1290 |
(C7×D4).28C23 = D28.35C23 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 224 | 8- | (C7xD4).28C2^3 | 448,1291 |
(C7×D4).29C23 = C2×D4.10D14 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 224 | | (C7xD4).29C2^3 | 448,1377 |
(C7×D4).30C23 = C14.C25 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | 4 | (C7xD4).30C2^3 | 448,1378 |
(C7×D4).31C23 = D14.C24 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | 8- | (C7xD4).31C2^3 | 448,1380 |
(C7×D4).32C23 = D7×2- 1+4 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | 8- | (C7xD4).32C2^3 | 448,1381 |
(C7×D4).33C23 = D28.39C23 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | 8+ | (C7xD4).33C2^3 | 448,1382 |
(C7×D4).34C23 = SD16×C2×C14 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 224 | | (C7xD4).34C2^3 | 448,1353 |
(C7×D4).35C23 = C14×C4○D8 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 224 | | (C7xD4).35C2^3 | 448,1355 |
(C7×D4).36C23 = C14×C8.C22 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 224 | | (C7xD4).36C2^3 | 448,1357 |
(C7×D4).37C23 = C7×D8⋊C22 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | 4 | (C7xD4).37C2^3 | 448,1358 |
(C7×D4).38C23 = C7×D4○D8 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | 4 | (C7xD4).38C2^3 | 448,1359 |
(C7×D4).39C23 = C7×D4○SD16 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 112 | 4 | (C7xD4).39C2^3 | 448,1360 |
(C7×D4).40C23 = C7×Q8○D8 | φ: C23/C22 → C2 ⊆ Out C7×D4 | 224 | 4 | (C7xD4).40C2^3 | 448,1361 |
(C7×D4).41C23 = C14×2- 1+4 | φ: trivial image | 224 | | (C7xD4).41C2^3 | 448,1390 |
(C7×D4).42C23 = C7×C2.C25 | φ: trivial image | 112 | 4 | (C7xD4).42C2^3 | 448,1391 |